NUCLEAR ENERGY'S PROLIFERATION PROBLEM

Presentation of Thomas B. Cochran

to

Institute of National Strategic Studies/Department of Energy Conference

ENERGY AND NATIONAL SECURITY IN THE TWENTY-FIRST CENTURY

National Defense University Washington, D.C.

November 10, 1994

Natural Resources Defense Council, Inc. 1350 New York Avenue, N.W., Suite 300 Washington, D.C. 20005 Tel: (202) 783-7800 FAX: (202) 783-5917 E-Mail INTERNET: nrdcdc@igc.apc.org

ABSTRACT

Small quantities of reactor-grade and fuel-grade plutonium can be used to make efficient, powerful nuclear bombs as well as crude bombs and terrorist devices.

National separation, thermal reactor fuel recycle, and breeding of plutonium on a commercial scale place an impossible burden on the IAEA safeguards system to detect promptly the theft or diversion of weapon quantities of plutonium from peaceful use.

The vision in Japan, Russia and some European countries of a future "plutonium economy" provides a legitimate civilian cover for any country to acquire a stockpile of nuclear explosive materials, while ignoring the problem of future "break-out" from the NPT by countries that have "legally" acquired a plutonium stockpile under safeguards, but then decide to build nuclear arsenals.

Stockpiles of separated "civil" plutonium will act as a barrier to deep reductions and eventual elimination of nuclear weapons held by declared and undeclared nuclear weapon states.

Separation and use of plutonium in the civil nuclear fuel cycle is not justified by current or foreseeable energy market conditions, which strongly favor other fuels for generating electric power, and represents a grossly inefficient allocation of capital resources.

There is an urgent need for government intervention in states that now have significant programs involving the commercial use of nuclear weapon-usable materials to defer further separation of plutonium until the global inventory of separated plutonium is significantly reduced and energy market conditions fully justify the added security risks of using plutonium in the civil fuel cycle.

A. Introduction.

The proliferation issues related to civil nuclear power have been recognized for almost two decades: very small quantities of plutonium (Pu) and/or highly enriched uranium (HEU) are needed for a nuclear weapon; it is very difficult to provide adequate security for separated plutonium and HEU at bulk-handling facilities (nuclear fuel reprocessing and fabrication facilities) where separated plutonium and HEU are is found in non-discrete forms; and stockpiling of these materials in non-weapon states provides a dangerous breakout capability. The security of fissile material in Russia, the need to dispose of large stocks of fissile materials from retired weapons, and the growing recognition that we must address the long-term proliferation risks associated with spent fuel once the protection afforded by the radioactive fission products has decayed away, represent new dimensions to these issues.

B. The Amount of Plutonium and/or Highly-Enriched Uranium are Needed for a Nuclear Weapon is Very Small. After almost a half century of living with nuclear weapons there is still considerable misinformation about the fissile material requirements for nuclear weapons. For single-stage pure fission weapons, a spherically symmetric implosion design requires the least amount of fissile material to achieve a given explosive yield, relative to other possible designs. For this type of device the amount of fissile material required depends primarily upon the type of fissile material used, e.g., plutonium or HEU, the desired explosive yield of the device, and the degree to which the fissile material is compressed at the time disassembly of the fissile material begins due to the release of energy from the rapid nuclear chain reaction. The degree of compression achieved depends on the sophistication of the design and degree of symmetry achieved by the imploding shock wave. There are, of course, other factors -- such as the timing of the initiation of the chain reaction and the type of neutron reflector used -- but we will assume that the proliferant state or sub-national group already has acquired the necessary skills so that these factors are of secondary importance.

In Figures 1 and 2 are graphs showing the explosive yield of a pure fission weapon as a function of the quantity of weapon-grade (WG) fissile material (WGPu in Figure 1 and HEU in Figure 2) for three degrees of compression. In the figures the degree of compression is labeled according to our judgement as to the sophistication of the design; that is, whether it represents low, medium or high technology. As seen from Figure 1, the Nagasaki bomb, *Fat Man*, which produced a 20 kiloton (kt) explosion with 6.1 kilograms (kg) of WGPu, falls on the "low technology" curve. However, only three kilograms of WGPu compressed the same amount would still have produced a 1 kt explosion. A 1 kt yield is still a very damaging explosion with the potential to kill tens of thousands of people, depending on the population density and physical characteristics of the targeted area. Many tactical nuclear weapons that were in the U.S. nuclear arsenal had yields in the kiloton, and even sub-kiloton range. But the bad news does not stop there. A non-nuclear weapons state today can take advantage of the wealth of nuclear weapons design information that has been made public over the past 50 years, and do even better. As seen from Figure 1, to achieve an explosive yield of 1 kt, we estimate that from 1 to 3 kg of WGPu is required, depending upon the sophistication of the design. And from Figure 2, we estimate that some 2 to 7 kg of HEU is required to achieve an explosive energy release of 1 kt. Table 1 presents some of the results of our calculations in a different form. We estimate, for example, that as little as 2 kilograms of plutonium, or about 4 kilograms of HEU, is required to produce a yield of 10 kilotons.

The curves in Figure 1 apply to weapon-grade plutonium where the Pu-240 content is less then 7 percent. Most of the plutonium in the civil sector is reactor-grade with a Pu-240 content in the range of 20-35 percent. The critical mass of reactor-grade plutonium falls between that of weapon-grade plutonium and HEU.

Plutonium with a high Pu-240 content is less desirable for weapons purposes than weapon-grade plutonium, because for low-technology weapons designs the neutrons generated by the high rate of spontaneous fission of Pu-240 can increase the statistical uncertainty of the yield by "pre-initiating" the chain reaction before the desired compression of the plutonium core has been achieved. In spite of this difficulty, *militarily useful weapons, with predictable yields in the kiloton range can be constructed based on low technology designs with reactor-grade plutonium*. According to the conclusions of a recent study by the National Academy of Sciences in the United States, based in part on a classified 1994 study by scientists at the Lawrence Livermore National Laboratory:

even if pre-initiation occurs at the worst possible moment (when the material first becomes compressed enough to sustain a chain reaction), the explosive yield of even a relatively simple device similar to the Nagasaki bomb would be on the order of one or a few kilotons. While this yield is referred to as the 'fizzle yield,'' a one kiloton bomb would still have a destruction radius roughly one third that of the Hiroshima weapon, making it a potentially fearsome explosive. Regardless of how high the concentration of troublesome isotopes is, the yield would not be less. With a more sophisticated design, weapons could be built with reactor-grade plutonium that would be assured of having higher yields.¹

By making use various combinations of advanced technologies, including improved implosion techniques, the use of beryllium as a neutron reflector, boosting with deuterium and tritium, and two stage weapon designs, it is possible to offset the problems created by

¹ Management and Disposition of Excess Weapons Plutonium, Committee on International Security and Arms Control, National Academy of Sciences, National Academy Press, Washington, D.C. 1994, (Prepublication Copy) p.37.

the high rate of spontaneous fission of Pu-240. Using sophisticated designs, well within the capability of the declared weapon states, reliable light weight efficient weapons and high yield weapons whose yields have small statistical uncertainties can be constructed with plutonium regardless of the Pu-240 content. NRC Commissioner Victor Gilinsky best summed up the issue in 1976, when he stated,

Of course, when reactor-grade plutonium is used there may be a penalty in performance that is considerable or insignificant, depending on the weapon design. But whatever we once might have thought, we now know that even simple designs, albeit with some uncertainty in yield, can serve as effective, highly powerful weapons -- reliably in the kiloton range.²

C. Existing Physical Security Measures Provide Insufficient Insurance Against Theft of Weapon-Usable Nuclear Materials. Adequate physical security is essential to prevent the theft of any quantity of material, even as little as one bomb's worth. Highly accurate material accounting and control measures are essential to determine whether a theft has taken place, and to provide timely warning to prevent the material from being used for illicit purposes. It is well established -- from experience at existing civil and military chemical separation (reprocessing) plants, naval fuel facilities, and mixed-oxide fuel facilities -- that it is extremely difficult (some would argue impossible) to provide in practice a sufficient level of physical security and material accounting and control, at bulk handling facilities that process large amounts of nuclear weapons-usable material.

The difficulty in providing adequate physical security is that theft of materials can involve a collusion of individuals, including the head of the guard force, the head of the company, or even the state. Despite having guards at every bank, employees at the Bank of Credit and Commerce, Inc. (BCCI) were able to steal millions of dollars from bank customers because the thieves were running the bank – the collusion was at the top. If the threat includes the potential for collusion involving the guard force and facility directors, providing adequate physical security in the West would require turning the facility into a heavily armed site occupied by an independent military force. In Russia physical security has relied on heavily guarding not only the facilities, but also the towns where the work force resides. These closed cities are anathema to a democratic society.

Of course the principal role of physical security is completely reversed when the collusion involves elements of the government itself. In this case the primary mission of the security apparatus is to hide the program from outside scrutiny. It is now known that at various times in the past, the governments of the United States, Japan (during World War

² Victor Gilinsky, "Plutonium, Proliferation and Policy," Commissioner, Nuclear Regulatory Commission, Remarks given at Massachusetts Institute of Technology, November 1, 1976 (Press Release No. S-14-76).

II), Soviet Union, United Kingdom, France, China, Israel, India, South Africa, Sweden, Argentina, Brazil, Taiwan, Pakistan, North Korea, South Korea, and Iraq have had secret nuclear weapons development programs.

The collapse of the Soviet Union and the current economic conditions in Russia have severely challenged the physical security of weapons-usable fissile material there. Russian President Boris Yeltsin has said that 40 percent of individual private businessmen and 60 percent of all Russian companies have been corrupted by organized crime. Reports of illegal activities in Russia associated with nuclear materials--offers to sell and successful and unsuccessful attempts to steal nuclear materials--are now appearing regularly in the Russian and European. On average there is about one new case per week. Low-enriched uranium fuel has been stolen. Four tonnes (t) of beryllium and a small quantity of HEU, thought to be less than one kilogram, was stolen from a Russian nuclear facility, perhaps Obninsk. These materials were recovered last year by Lithuanian authorities in Vilnius. This may be the case involving the theft of several hundred grams of HEU that has been confirmed by the Russian Ministry of Atomic Energy (Minatom).

In another case a Russian nuclear scientist from the Luch Production Association, which manufactures nuclear space reactors, was apprehended in October 1992 at the Podolsk train station with 1.5 kilograms of HEU in his suitcase. In February of this year three kilograms of HEU (90% U-235) were stolen from a plant near Moscow. Subsequently, a St. Petersburg butcher was apprehended in an attempt to sell it. Between May 10 and August 12 of this year German authorities intercepted four small samples of weapon-usable materials, one having 300-350 grams of plutonium. These are some of cases we know about because the materials were intercepted. We know for certain that kilogram quantities of weapons-usable materials are being stolen from Russian nuclear institutions, and that some of it has crossed international borders. The most serious cased to date have involved weapons-usable materials in the civil sector. There may have been other diversions of nuclear weapons-usable materials that were successful and have gone undetected.

Plutonium-239 has a half-life of 24,000 years, and uranium-235 has a half-life of 700 million years. The lifetimes of weapon-usable materials greatly exceed the lifetimes of the institutions that must prevent their misuse. The situation in Russia today makes this abundantly clear.

D. IAEA Safeguard Measures are Incapable of Detecting Diversion of Weapons-Usable Fissile Material From Bulk Handling Facilities. The international community's principal tool for penetrating the secrecy of nuclear facilities is the power of the International Atomic Energy Agency (IAEA) to conduct inspections and require adherence to strict material accounting and control procedures, collectively referred to as "safeguards." These are meant to provide timely detection of the diversion of significant quantities of weapons-usable material.

While there are numerous shortcomings in the design and implementation of IAEA safeguards, we focus here on three technical flaws: (a) the IAEA's "significant quantity" (SQ) values are technically flawed--they are far too high; (b) detection of the diversion of a SQ amount applies to a material balance area, instead of the entire facility, or even country; and (c) the IAEA's timely detection criterion cannot be met.

For safeguards purposes the IAEA defines a "significant quantity" (SQ) of nuclear material as "the approximate quantity of nuclear material in respect of which, taking into account any conversion process involved, the possibility of manufacturing a nuclear explosive device cannot be excluded."³ Significant quantity values currently in use by the IAEA are given in Table 2.⁴

The SQ values were recommended to the IAEA by a group of experts, namely, the IAEA's Standing Advisory Group for Safeguards Implementation (SAGSI), and "relate to the potential acquisition of a first nuclear explosive by a non-nuclear weapon state."⁵

The direct-use values in Table 2, that is, 8 kg of plutonium, 8 kg of uranium-233, and 25 kg of HEU, are also referred to by the IAEA as "threshold amounts," defined as "the approximate quantity of special fissionable material required for a single nuclear device."⁶ The IAEA cites as a source for these threshold amounts a 1967 United Nations document.⁷ The IAEA states,

"These threshold amounts include the material that will unavoidably be lost in manufacturing a nuclear explosive device. They should not be confused with the minimum critical mass needed for an explosive chain reaction, which is smaller.³⁴

⁴ Ibid., p. 24.

⁶ Ibid., p. 23.

³⁴ Using highly sophisticated techniques available to NW States, the critical mass and the corresponding threshold amount can also be significantly reduced, but these are special cases that need not be considered here."

³ IAEA Safeguards Glossary, 1987 Edition, IAEA, IAEA/SG/INF/1 (Rev. 1), 1987, p. 23.

⁵ Thomas Shea, "On the Application of IAEA Safeguards to Plutonium and Highly Enriched Uranium from Military Inventories," IAEA, (June 1992, with additions: December 1992).

⁷ Effects of the Possible Use of Nuclear Weapons ..., United Nations, A/6858, 6 October 1967.

As seen from Figures 1 and 2, the direct-use SQ or threshold values currently used by the IAEA are technically indefensible. The IAEA is making false claims as to the minimum quantity of nuclear material needed for a nuclear weapon, even for a lowtechnology first nuclear explosive by a non-nuclear weapon state, including consideration of unavoidable losses. If one took the same *Fat Man* design, first tested at the *Trinity* site in New Mexico and dropped on Nagasaki in 1945, and substituted a three kilogram plutonium core for the 6.1 kilogram core that was used in 1945, the yield of this device would be on the order of one kiloton, a very respectable atomic bomb. Thus, the IAEA is in error to assert that "highly sophisticated techniques available to NW States" are needed to make nuclear weapons with "significantly reduced" quantities of materials.

The so-called "highly sophisticated techniques available to NW States" were known to U.S. weapons designers in the late-1940s and early 1950s, and nuclear devices using very small quantities of plutonium and HEU--so-called "fractional crit" weapons--with yields on the order of one kiloton were tested during the Ranger series in 1951. Furthermore, a well advised safeguards program for a given country or group of countries would set the "significant quantity" levels at values less than the minimum amount needed for a weapon, in recognition of the fact that materials can be diverted from more than one source. The practice of setting higher levels to account for manufacturing losses is imprudent, particularly in view of the fact that a significant fraction of these "losses" are technically recoverable.

In sum, safeguards apply to all non-weapons countries, irrespective of their technological sophistication. Many countries, such as Japan, Germany, Israel, India and Pakistan, have highly developed nuclear infrastructures, and must be considered technologically sophisticated. Even for countries that are in general not terribly sophisticated technologically, the key technical information needed to establish a program for achieving substantial compression by implosion techniques is now available in the unclassified literature. The quantities defining safeguards significance, therefore, must be based an the assumption that the proliferator has access to advanced technology. As a consequence, NRDC believes the IAEA's significant quantities should be lowered at lease 8-fold to the values in Table 3.

In the parlance of nuclear material accounting the inventory difference (ID) is defined

as

$$ID = BI + I - R - EI,$$

where BI is the beginning inventory, EI is the ending inventory, and I and R are, respectively, the material added and removed during the inventory period.⁸ For the minimum amount of diverted plutonium (assumed by the IAEA to be the SQ value--

⁸ In the literature "inventory difference" (ID) is sometimes called "material unaccounted for" (MUF).

currently 8 kg of plutonium) to be distinguished from measurement noise with detection and false alarm probabilities of 95% and 5%, respectively, it can be shown that 3.3 $\sigma_{\rm ID}$ must be less than the SQ value, where $\sigma_{\rm ID}$ is the uncertainty in the inventory difference.⁹ This means if the SQ value for plutonium were lowered to 1 kg, $\sigma_{\rm ID}$ should not exceed about 300 grams.

At reprocessing plants that handle tons of weapons-usable plutonium, σ_{ID} is dominated by the error in measuring the plutonium input into the plant, which is about one percent of the throughput. The Japanese Tokai Mura reprocessing plant, one of the smallest plants in the West, has an average output of about 90 t of heavy metal per year (tHM/y), and the LWR spent fuel processed has an average total plutonium content of about 0.9 percent. Thus, σ_{ID} for Tokai Mura is about 8 kg of plutonium per annual inventory. Even if inventories were taken every six months, σ_{ID} would be about 4 kg, which is an order of magnitude too high. One simply cannot detect the diversion of several bombs' worth of plutonium annually from Tokai Mura. The inventory difference would be larger at the plants in the United Kingdom and France since they have a greater throughput of plutonium.

We are told that material accounting and control at Russian plants handling nuclear fuel in bulk form is rudimentary at best. The RT-1 chemical separation plant at Chelyabinsk-65 has a capacity of about 400 tHM/y, and until 1991 had been operating at about 200 tHM/y. Therefore, the situation at RT-1 would be two to six times worse than at Tokai Mura, even if it were brought up to current western standards.¹⁰ It is difficult to imagine running a bank in which you counted the money only a few times a year, and then only counted the notes larger than 10,000 rubles. Yet the Russian nuclear establishment

⁹ Marvin Miller, "Are Safeguards at Bulk-Handling Facilities Effective?, Nuclear Control Institute, Washington, D.C., August 1990.

¹⁰ According to Evgeni Dzekun, chief engineer of the Mayak civil reprocessing plant at Chelyabinsk-65, a plutonium input-output balance for the plant is calculated every 3-4 months when the plant is cleaned out between reprocessing campaigns. About one percent of the plutonium is lost to waste streams, and a lesser amount to plateout in the plant's plumbing. The ID is typically 15 kilograms of Pu per campaign, amounting to a total ID of about 3% percent of throughput. In other words, the ID is almost twice the IAEA's significant quantity for plutonium. According to Dzekun, if the ID in a given campaign is larger than can be explained by measurement errors, a "special investigation" is carried out, but what this consists of is not known. To assure detection of an 8 kg. diversion at this plant with 95% confidence and a 5% false alarm rate, 3.3 x ID must be less than 8 kg., so this plant apparently falls short of the minimum IAEA standard by a factor of six. If 4 kilograms is regarded as the amount needed for a weapon, then the "safeguards" at Mayak need to be improved by a factor of twelve in order to provide confident detection of diverted material. See "Report on an International Workshop on the Future of Reprocessing, and Arrangements for the Storage and Disposition of Already-Separated Plutonium (Moscow, 14-16 December 1992) by F.v.Hippel, Princeton University, and T.B. Cochran, C.E. Paine, Natural Resources Defense Council, 10 January, 1993, p. 5.

sanctions the commercial use of nuclear weapons-usable material under safeguards that are no better.

The IAEA permits facilities to reduce inventory uncertainties in two ways. First, the plutonium entering a reprocessing plant is not measured until after the spent fuel has been chopped up and dissolved, thereby sidestepping the large uncertainties in measurements ot the amounts of plutonium entering the plant. Secondly, the facilities are subdivided into numerous material balance areas. The facilities in fact should be so subdivided; and this provides added protection against a single insider threat. But it must be recognized that this does not afford adequate protection against a collusion of individuals, particularly in scenarios where the state is engaging in the diversion.

In May of this year the Nuclear Control Institute disclosed that there was a 70 kg discrepancy in the plutonium inventory balance at the Tokai Mura fuel fabrication plant. The Japanese claimed the plutonium was not missing, but was stuck to the surfaces of the glove boxes. Nevertheless, the uncertainty in the estimate of this plutonium holdup is on the order of 10-15 percent-one or more nuclear weapons worth. Astonishingly, the IAEA has given Japan months to resolve this discrepancy.

Detection time (the maximum time that should elapse between diversion and detection of a significant quantity) should be in the same range as the conversion time, defined as the time required to convert different forms of nuclear material into components of nuclear weapons. For metallic plutonium and HEU, the conversion time is 7-10 days; for other compounds of these materials, 1-3 weeks. These times are already much shorter than the period between inventories at any fuel reprocessing plant operating today. Thus, there can be no assurance that the primary objective of safeguards - the timely detection of significant quantities of plutonium - is now being, or can be, met.

To meet the timely detection criteria, reprocessing plants would have to undergo clean-out inventories every few days, or weeks. But this would reduce their annual throughput -- and utility -- practically to zero. It would also drive up the cost of reprocessing. Plutonium recycle, the use of mixed-oxide (MOX) fuel in standard commercial LWRs, is already uneconomical due to the high costs of reprocessing and fuel fabrication even when conducted without a technically adequate level of safeguards. Similarly, the cost of the fast breeder reactor (FBR) fuel cycle is greater than that of the LWR operating on the once-through cycle without plutonium recycle.

In Western Europe and Japan, consideration is being given to Near-Real-Time Accountancy (NRTA) as a means of improving the sensitivity and timeliness of detection. NRTA involves taking inventories at frequent intervals, typically once a week, without shutting down the facility. It and similar concepts are likely to be opposed by operators due to the added costs that would be imposed. In any case the methods and adequacy of practical NRTA system implementation are open questions.

E. All Nuclear Weapons and Weapons-Usable Materials Should be Places Under Some Form of Bilateral or International Safeguards. Perhaps the greatest non-proliferation priority today is to improve the physical security and material accounting of warheads and weapons-usable materials in Russia. Russian nuclear weapons material, naval fuel, and civil reactor fuel facilities are highly integrated. Many of these facilities are old and cannot meet IAEA safeguard criteria. For these reasons Russian officials are unwilling to consider IAEA safeguards over these facilities at this time. Consequently, the most promising means of achieving the necessary improvements is through U.S.-Russian and other bilateral efforts. To obtain full Russian participation, any bilateral effort must be on a completely reciprocal basis to avoid the appearance of meddling in Russia's national security affairs.

The most promising approach is through a cooperative program involving the nuclear weapons laboratories in the United States and Russia. The Department of Energy (DOE) launched such a cooperative lab-to-lab program in April of this year. Unfortunately the mission of the DOE effort is too narrow. It is limited to improving the **national** physical security and material accounting programs in Russia. Unfortunately, the rate at which improvements will be made is funding limited: \$2 million in FY 1994, \$15 million in FY 1995, and \$40 million in FY 1996. Also, only a few facilities will be covered by the cooperative effort, and there will be little capability for the U.S. to observe the effectiveness of the U.S. assistance when applied to sensitive military facilities.

The mission of the lab-to-lab effort needs to be expanded to construct a comprehensive non-discriminatory safeguards regime that covers all nuclear weapons and weapon-usable fissile material. Only then will the parties be forced to address methods for adequately safeguarding the most sensitive facilities and materials. There is no reason this should not be one of the mainline mission of the U.S. and Russian labs.

In the left-hand column of Table 4, are listed various categories of nuclear weapons, fissile materials, and weapons and fissile material facilities. The second column denotes the declared weapons states--the US, UK, Russia, France and China. The third column denotes the undeclared weapons states--Israel, India, and Pakistan; and the last column denotes the non-weapon states. As seen from Table 4, all of the nuclear weapons and most of the fissile material facilities are not covered by the IAEA or even bilateral safeguards. As shown in Table 5, even with the Clinton Administration objectives of a global cut-off in the production of fissile material for weapons, and with IAEA safeguards placed over fissile materials declared "excess" to national security requirements, all nuclear warheads and many fissile material inventories and production facilities will remain outside of any bilateral or international safeguards, including the weapons-usable material inventories in Russia. If we

hope to achieve deep reductions in the global nuclear weapons arsenals we will need a comprehensive safeguards regime covering all nuclear weapons and weapon-usable materials (Table 6). The U.S. and Russian nuclear weapons labs should begin constructing such a regime on a bilateral basis.

F. Proliferation Risks Associated With the Closed Fuel Cycle. The United Kingdom, France, Russia, and Japan are reprocessing spent civil reactor fuel for waste management and to separate plutonium for recycle as a nuclear fuel in light water reactors and breeders. France, Russia and Japan continue to develop plutonium breeder reactors. Not only is there no adequate means of safeguarding large bulk handling facilities to prevent weapon-usable plutonium from being stolen, but also reprocessing of spent fuel and the recycling of plutonium¹¹ into fresh fuel for reactors permit non-nuclear weapons states to justify the acquisition and stockpiling of nuclear weapons-usable material -- ostensibly for peaceful purposes. At the same time, without violating any international safeguards agreements, these countries can design and fabricate non-nuclear weapon components. By moving to a point of being within hours of having nuclear weapons - perhaps needing only to introduce the fissile material into the weapons -- a nascent weapons state would have all of its options open. Under these conditions, international safeguards agreements can serve as a cover by concealing the signs of critical change until it is too late for diplomacy to reverse a decision to "go nuclear." India recovered the plutonium for its first nuclear device in a reprocessing plant that was ostensibly developed as part of its national breeder program.

Acceptance of the plutonium breeder as an energy option provides the justification for the early development of a reprocessing capability by any country. A non-nuclear weapons country would always have the option to shift its "peaceful" nuclear program to a weapons program, but this would require the politically difficult decision to attempt evasion or overtly abrogate IAEA safeguards. Without national reprocessing facilities and breeder reactors, countries wishing to develop nuclear weapons capacity face very considerable political problems and cost. Obtaining large quantities of weapon-usable plutonium requires that they build one or more specialized production reactors and chemical separation facilities. By establishing their nuclear weapons option through a plutonium-using nuclear electric generation program, they can circumvent these obstacles.

Were plutonium fast breeder reactors ever to become economical -- I seriously doubt this will happen -- their deployment would entail staggering amounts of nuclear

¹¹ Or any other weapons material, such as highly enriched uranium or uranium-233.

weapons-usable plutonium in the reactors and the supporting fuel cycle.¹² If only 10 gigawatts of electric capacity were supplied by breeders - hardly enough to justify the R&D effort in any country even if the economics were otherwise favorable - the plutonium inventory in the reactors and their supporting fuel cycle would be on the order of 100-200 t -- sufficient for 17,000 to 33,000 nuclear weapons each using 6 kg of plutonium. By comparison, U.S. nuclear weapons stockpiles in 1987 consisted of 23,400 warheads, and the weapon-grade plutonium inventory, most of which was in weapons, was about 90 t. The Russian warhead plutonium stockpile consists of an estimated 135-170 t of plutonium in a total stockpile which peaked in 1985 at about 45,000 warheads.

Moreover, about one half of the plutonium created in a breeder reactor is bred in the blanket rods. The burnup of the blanket material is low. Consequently, the resulting plutonium is weapon-grade, with a Pu-240 concentration lower than that used in U.S. and Russian weapons. Thus, any non-weapons country that has large stocks of breeder fuel, has the capacity to produce a ready stock of weapon-grade plutonium. It only has to segregate and reprocess the blanket assemblies separately from the core assemblies.

Consequently, remaining breeder research and development programs, if not deferred altogether, should be limited to conceptual design efforts only, with an emphasis on advanced proliferation resistant fuel cycles that do not require mastery of the technology for isolating and fabricating weapons-usable nuclear materials. To the extent that this is politically impossible, sufficient plutonium has already been separated to meet the needs of R&D programs, so at a minimum there is no requirement to continue separating plutonium for this purpose. In this connection it should be noted if plutonium breeders some day prove to be economically competitive, and if the breeder fuel cycle can be safeguarded with high confidence under stringent international controls, then commercial deployment could begin with cores of non-weapons usable 20% enriched uranium. In other words, there is no need to accumulate a stockpile of separated plutonium today to insure the possibility of deploying breeders at some point in the future.

G. Civil Plutonium Stockpiles Are a Potential Barrier to Achieving Deep Reductions in the Global Nuclear Arsenals. The accumulation of large stockpiles of separated plutonium and weapon-usable expertise in nominally civil programs will act as a barrier to deep reductions

¹² With a plutonium breeder economy the quantity of plutonium involved would be enormous. The plutonium inventory in a commercial-size breeder is about 5 t, of which 3.5 t is fissile - sufficient for 800 atomic bombs using 6 kg Pu each. A Russian BN-800 breeder reactor would require over 4 t. Although the net amount of plutonium produced in a fast breeder reactor annually is generally less than that produced in a conventional thermal power reactor of the same size, one-third to one-half of the FBR fuel must be removed annually for reprocessing, plutonium recovery, and remanufacture into fresh fuel. Since the fuel will be outside of the reactor for 3.5 to 7 years the plutonium inventory needed to support a single commercial-size plutonium breeder is 11-22 t - sufficient for 1800 to 3600 atom bombs using 6 kg Pu each.

and eventual elimination of nuclear weapons held by declared and undeclared weapon states. One need only ask how far China, for example, might be willing to go in accepting limits on, or reductions in its nuclear weapons stockpile if Japan is poised to accumulate an even larger inventory of weapons-usable fissile materials in pursuit of a civil plutonium program with no clear commercial rationale. Similarly, Russia's continued operation of reprocessing plants and potentially large-scale commitment to the breeder reactor fuel cycle could abort U.S. political support for continuing toward very deep reductions and ultimate abolition of nuclear weapons stockpiles. The lack of such a commitment by the U.S. and other nuclear weapons states, could, in turn, lead to continued erosion of the nonproliferation regime. Hence the need to forthrightly address the mistaken legitimacy afforded civil plutonium programs under the current system of international controls. In any case, nations having civil nuclear energy programs with closed fuel cycles can make an important contribution to the disarmament process by deferring further separation of plutonium until the global inventories of plutonium are substantially reduced.

H. Plutonium Economics. Development efforts worldwide have demonstrated that plutonium fast breeders are uneconomical -- unable to compete with thermal reactors operating on a once through uranium cycle -- and that breeders will remain uneconomical for the foreseeable future. The putative benefits of the plutonium breeder, associated with its ability to more efficiently utilize uranium resources, are not diminished if commercial breeder development is postponed for decades, and the spent fuel from existing conventional reactors is stored in the interim. As thoroughly documented by Paul Leventhal and Steve Dolley of the Nuclear Control Institute in the U.S., energy security in the nuclear sector can be achieved more cheaply and more quickly by stockpiling uranium.¹³

The use of plutonium in the form of MOX fuel in conventional power ("thermal") reactors is likewise uneconomical, because the costs of using MOX fuel cannot compete with those of enriched fresh uranium fuel for the foreseeable future. A recent study by the RAND Corp. in the United States estimates that, at the current cost for reprocessing services, the price of uranium feedstock for enrichment would have to increase by a factor of 16 before plutonium recycle in LWRs becomes competitive.¹⁴

At current reprocessing costs and an FBR/LWR capital cost ratio of 1.5, the yellowcake price would have to increase by a factor of 45 before the breeder becomes competitive. When might this happen? The earliest date, based on the most optimistic

¹³ See, for example, P. Leventhal and Steven Dolley, "A Japanese Strategic Uranium Reserve: A Safe and Economic Alternative to Plutonium," Nuclear Control Institute, Washington D.C., January 14, 1994.

¹⁴ Brian G. Chow and Kenneth A. Solomon, *Limiting the Spread of Weapon-Usable Fissile Materials*, RAND National Defense Research Institute, Santa Monica, CA, 1993, p.36-38.

assumptions about nuclear energy growth, reprocessing costs, and breeder capital costs, is at least 50 years away, and the more likely case is 100 years away. On the timescale for technology development, a period of 50 -100 years is a very long time, during which more efficient fission options may emerge, to say nothing of advanced solar and new energy technologies not yet invented.

Accumulating a plutonium inventory today is not required to insure a sufficient startup fuel supply for breeders. If the time ever comes when plutonium breeders are both economically competitive and proliferation resistant, startup cores can be made from reserves of uranium enriched to about 20% U-235 (since the critical mass of 20%-enriched uranium metal is 14 times that of 93.5%-enriched HEU metal, it would require on the order of 35 times, or more, 20%-enriched HEU compared with the amount of weapon-grade plutonium needed, and the same increase in the amount of high explosive, to achieve a comparable yield). Consequently, there is no sound economic or energy security justification for continued commercial reprocessing.

Despite these realities, however, by the end of 1990, France, the U.K and Japan alone had separated about 90 t of civil plutonium, and these countries plan to separate an additional 170 t by 2000.¹⁵ The global inventory of separated civil plutonium (i.e., not fabricated into fuel or in use in reactors) will rise to an estimated 170 t by the turn of the century,¹⁶ that is, almost two times the size of the U.S. weapons plutonium stockpile at its peak. This amount would be in addition to more than 100 t of plutonium likely to be removed from retired U.S. and former Soviet weapons.

I. CONCLUSION.

At the dawn of the nuclear age, the authors of the famous Acheson-Lilienthal plan for international control of atomic energy clearly recognized the inherent military potential of fissile materials used for ostensibly peaceful purposes. Indeed, they believed that no widespread use of nuclear energy for civil purposes was possible or desirable without international ownership and control of the full nuclear fuel cycle.

Today it remains the unanimous opinion of the weapons design and arms control communities that the pacing consideration in a country's acquisition of a nuclear weapon is

¹⁵ David Albright, Frans Berkhout and William Walker, World Inventory of Plutonium and Highly Enriched Uranium 1992, (Stockholm: SIPRI; and Oxford: Oxford University Press, 1993), p. 109.

not the capability to design a nuclear device, but the availability of fissile materials which can be turned to weapons purposes. Ending – as opposed to "managing" – nuclear weapons proliferation will likely prove impossible as long as: production of HEU and chemical separation of plutonium for national security needs remain legitimate activities in a particular class of "nuclear weapon states," and; the international control regime permits civil nuclear fuel reprocessing in any state that asserts a peaceful interest in plutonium recycle and future deployment of plutonium breeder reactors for energy production.

With the end of the cold war, and the reductions in the superpower arsenals, the United States and Russia have huge surpluses of weapon-grade plutonium and highlyenriched uranium. Undoubtedly, there is no need for additional weapons plutonium production in other declared weapons states. By completely renouncing the production, separation, and isotopic enrichment of weapons-usable nuclear materials, declared weapons states can put pressure on undeclared weapons states to do the same. Weapon-usable fissile materials have no legitimate application in today's energy marketplace, and can always be produced in the future should the appropriate market and international security conditions emerge.

Despite the fact that all types of plutonium in relatively small quantities, irrespective of their designation as civil or military, have an inherent capability to be used in weapons, the current nonproliferation regime allows national separation and acquisition of plutonium (and highly-enriched uranium) under an internationally monitored commitment of peaceful use. A more effective nonproliferation approach would be a global ban on the production, transfer, acquisition, or isotopic enrichment of separated plutonium, and on the isotopic enrichment of uranium to greater than 20% U-235.

The heavy commitment of U.K, France, Japan and Russia to spent fuel reprocessing and recycle of plutonium, and the lingering hopes of a future revival of the plutonium fast breeder program, have effectively barred consideration of such a simple and direct step as outlawing production and acquisition of weapons-usable fissile materials on a global basis.

While there are obvious technical advantages in such a comprehensive approach, tangible political progress will more likely be achieved in the near term by adopting <u>parallel</u> approaches that seek separate controls -- in the initial stages at least -- on the military and civil applications of weapon-usable fissile materials.

ACKNOWLEDGEMENT

The author wishes to thank his colleague, Christopher E. Paine, for his contributions to this paper.

1

Table 1

Approximate Fissile Material Requirements for Pure Fission Nuclear Weapons.

	WEAPON-GRADE PLUTONIUM (kg)			HIGHLY-ENRICHED URANIUM (kg)		
Yield	Technical Capability			Те	chnical Capabil	ity
(kt)	Low	Medium	High	Low	Medium	High
1	3	1.5	1	8	4	2.5
5	4	2.5	1.5	11	6	3.5
10	5	3	2	13	7	4
20	6	3.5	3	16	9	5

Table 2

IAEA Significant Quantities.

Material	Quantity of Safeguards Significance	Safeguards Apply to:
Direct-use nuclear material		
Plutonium	8 kg	Total element
Uranium-233	8 kg	Total isotope
Uranium enriched to 20% or more	25 kg	U-235 isotope
Indirect-use nuclear material		
Uranium (<20% U-235)	75 kg	U-235 isotope
Thorium	20 t	Total element

.

Table 3

NRDC's Proposed Significant Quantities.

Material	Quantity of Safeguards Significance	Safeguards Apply to:
Direct-use nuclear material		
Plutonium	: 1 kg	Total Element
Uranium-233	1 kg	Total isotope
Uranium enriched to 20% or more	3 kg	U-235 isotope

r.

TABLE 4. CURRENT SAFEGUARDS

	WEAPON STATES		NON-WEAPON STATES	
	DECLARED	UNDECLARED		
MILITARY:			-	
Warheads:				
Operational				
Reserve				
Retired				
Fissile Material:				
In Warheads				
Reserved for Warheads				
Declared Excess				
Facilities:				
Weapon Production				
Material Production				
Excess Material Storage				
NAVAL FUEL CYCLE:				
Facilities				
Fuel				
CIVIL NUCLEAR:			· · · · · · · · · · · · · · · · · · ·	
Reactors		AEA STATES		
Fuel Cycle Facilities		A EA		
HEU/Pu		AEA MAL	IN THE ACTION OF A STATE OF A STA	
LEU				
Spent Fuel		AEA CAL		

TABLE 5. FISSILE CUTOFF FOR WEAPONS AND EXCESS STOCKS UNDER IAEA SAFEGUARDS

[WEAPON STATES		NON-WEAPON STATES	
· · · · · · · · · · · · · · · · · · ·	DECLARED	UNDECLARED		
MILITARY:				
Warheads:				
Operational				
Reserve				
Retired				
Fissile Material:				
In Warheads				
Reserved for Warheads				
Declared Excess				
Facilities:	2			
Weapon Production	, · ·			
Material Production	AEASS			
Excess Material Storage				
NAVAL FUEL CYCLE:				
Facilities				
Fuel				
CIVIL NUCLEAR:		· · ·		
Reactors				
Fuel Cycle Facilities			IN THE REAL FOR THE REAL PROPERTY OF	
HEU/Pu	IAEA 1			
LEU				
Spent Fuel		AEA	IAEA	

TABLE 6. A COMPREHENSIVE SAFEGUARDS REGIME FOR THE 21ST CENTURY

	WEAPON STATES		NON-WEAPON STATES
	DECLARED	UNDECLARED	
MILITARY:			
Warheads:			
Operational	MONITORED		
Reserve	MONITORED		
Retired	MONITORED		
Fissile Material:		-	
In Warheads	MONITORED		
Reserved for Warheads	MONITORED		
Declared Excess	<u>Intern</u>		
Facilities:			
Weapon Production	MONITORED		
Material Production	la le la seconda de la seconda d		
Excess Material Storage	AEAE		
NAVAL FUEL CYCLE:			
Facilities	MONITORED	MONITORED	MONITORED
Fuel	MONITORED	MONITORED	MONITORED
CIVIL NUCLEAR:			
Reactors	INTERACTOR	AEA BEAR	
Fuel Cycle Facilities	INTERACTOR	AEAABAA	
HEU/Pu	AEA	AEA	
LEU	IAEA MAL	AEA	
Spent Fuel	AEA	AEA	AEA